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Abstract

Causal mediation analysis aims to investigate how an intermediary factor, called a
mediator, regulates the causal effect of a treatment on an outcome. With the increas-
ing availability of measurements on a large number of potential mediators, methods
for selecting important mediators have been proposed. However, these methods of-
ten assume the absence of unmeasured mediator-outcome confounding. We allow for
such confounding in a linear structural equation model for the outcome and further
propose an approach to tackle the mediator selection issue. To achieve this, we firstly
identify causal parameters by constructing a pseudo proxy variable for unmeasured
confounding. Leveraging this proxy variable, we propose a partially penalized method
to identify mediators affecting the outcome. The resultant estimates are consistent,
and the estimates of nonzero parameters are asymptotically normal. Motivated by
these results, we introduce a two-step procedure to consistently select active me-
diation pathways, eliminating the need to test composite null hypotheses for each
mediator that are commonly required by traditional methods. Simulation studies
demonstrate the superior performance of our approach compared to existing meth-
ods. Finally, we apply our approach to genomic data, identifying gene expressions
that potentially mediate the impact of a genetic variant on mouse obesity.
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1 Introduction

Mediation analysis plays a crucial role across diverse disciplines such as psychology, social

science, and genetic epidemiology. Its purpose is to explore how the effect of a treatment

on an outcome is transmitted through a mediator variable. The primary objective is to

disentangle the overall causal effect into a direct treatment-outcome link and an indirect

effect through the mediator. Initially, mediation analysis focused on a single mediator

within linear structural equation models (Baron and Kenny, 1986). However, as datasets

with numerous variables have become more accessible, recent strides in causal inference have

expanded the mediation model to encompass multivariate or high-dimensional mediators

(Imai and Yamamoto, 2013; VanderWeele and Vansteelandt, 2014; Daniel et al., 2015;

Huang and Pan, 2016; Zhang et al., 2021; Xia and Chan, 2022, 2023; Lin et al., 2023).

When there are numerous or high-dimensional mediators, how to select active mediation

pathways is an important but challenging problem. Various methods that were introduced

in high-dimensional statistics have been adapted here for mediation pathway selection; see

for instance, marginal screening, penalized regression or dimension reduction (Zhang et al.,

2016; Huang and Pan, 2016; Jones et al., 2021; Zhao and Luo, 2022). Within the lin-

ear structural equation modeling framework, many studies focus on testing indirect effect

through each mediator to identify important mediators. Since the indirect effect is often

expressed as a product of the effect of the treatment on the mediator and the effect of

the mediator on the outcome, conducting such tests hinges on composite null hypothesis,

which is complicated. Nevertheless, some researchers have established statistical inference

methods by controlling the family-wise error rate or false discovery rate using multiple

testing techniques (Boca et al., 2014; Zhang et al., 2016; Sampson et al., 2018; Djordjilović

et al., 2019; Yue and Hu, 2022). Recently, Dai et al. (2020) and Liu et al. (2022) proposed
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an approach to overcome the challenge of a large number of the composite null hypothesis

through estimating the proportions of the three null cases and then provided a test based

on the underlying mixture null distribution. Shi and Li (2022) presented a new hypothesis

testing procedure, leveraging boolean matrices logic, to assess individual mediation effects.

Moreover, recent proposals have also emerged for testing the indirect effects through all

mediators (Zhou et al., 2020; Guo et al., 2022, 2023). However, all these methods presume

the absence of unmeasured mediator-outcome confounding. Neglecting unmeasured con-

founders not only introduces bias in estimating direct and indirect effects, but may also

lead to improper selections of crucial mediators in the analysis.

For selecting important mediators in the presence of unmeasured confounding, the first

challenge is identification. Extensive methods have been proposed to deal with this issue

when a single mediator is considered (Ten Have et al., 2007; Small, 2012; Li and Zhou, 2017;

Guo et al., 2018; Fulcher et al., 2019; Li et al., 2021; Dukes et al., 2023). In particular,

identification can be achieved by leveraging auxiliary variables that satisfy certain exclu-

sion restrictions (Frölich and Huber, 2017). In cases without auxiliary variables, Ten Have

et al. (2007) employed the interaction between covariates and the treatment as instrumen-

tal variables for evaluating the impact of the mediator on the outcome, while Fulcher et al.

(2019) introduced an alternative approach based on heteroskedasticity restrictions. Similar

methods can be used for multiple mediators, simply treating them as a single vector-valued

mediator. Zheng and Zhou (2015) expanded the approach proposed by Ten Have et al.

(2007) to accommodate cases regarding multilevel treatment and multicomponent media-

tors. The identification conditions essentially require that each mediator model contains

baseline covariates interacted with the treatment. Wickramarachchi et al. (2023) extended

the work of Fulcher et al. (2019) to multiple mediators, leveraging heterogeneity assump-
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tions for the effect of the treatment on each mediator. While these methods allow for

unrestricted correlations among multiple mediators, their identification strategies require

each mediator model to satisfy certain restrictions. This can potentially be relaxed in

some scenarios by employing latent variable methods that exploit the shared confounding

structure among the mediators. In the context of multiple treatments, some authors have

attempted to identify average causal effects using such methods (Wang and Blei, 2019;

Miao et al., 2023; Tang et al., 2023). In the literature on multiple mediators, Derkach et al.

(2019) proposed a latent variable model for mediation analysis. However, their model as-

sumes that potential mediators are a group of latent factors, which differs from the settings

considered in this paper. More recently, under a latent factor model for multiple media-

tors, Yuan and Qu (2023) discussed the identification of average causal mediation effects

based on a latent sequential ignorability assumption given the unmeasured confounding.

Their identification strategy additionally requires that the sequential ignorability assump-

tion holds after conditioning on a constructed surrogate confounder. All these approaches

do not involve the mediator selection issue, and directly applying them to tackle this issue

may be improper, because they either require as many interaction terms as the number of

mediators or cannot well incorporate additional penalty terms.

In this paper, we propose a strategy to address the mediator selection issue in the

presence of unmeasured mediator-outcome confounding within a linear structural equa-

tion outcome model. Given the shared confounding structure, we introduce a latent factor

model for mediators after excluding the effects of observed treatment and covariates. A

crucial aspect of our approach involves calculating the linear projection of the unmeasured

confounder on the residual of regressing the mediators on the treatment and observed co-

variates. The constructed projection variable can be seen as a pseudo proxy variable for
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the unmeasured confounding, enabling us to address the mediator selection challenge. We

replace the unmeasured confounder with the pseudo proxy variable within the outcome

model and develop an adaptive lasso type procedure for estimation. Importantly, our use

of projection eliminates the need for external proxies and leads to the formulation of an

identification condition based on this constructed proxy variable. In situations involving

a univariate unmeasured confounder, our approach enables identification when only one

mediator model contains nonlinear terms of baseline covariates or interactions between

treatment and covariates. This contrasts with previous methods that essentially require

each mediator model to meet such restrictions. Under certain regularity conditions, we

demonstrate the selection consistency of the resulting estimates and the asymptotic nor-

mality of the estimates for nonzero parameters. Lastly, we propose a two-step procedure

for consistently selecting active mediation pathways. This approach obviates the need to

test composite null hypotheses for each mediator, as required by many existing methods.

The remainder of this paper is organized as follows. In Section 2, we introduce nota-

tions, assumptions and the proposed model, and we also establish the identifiability result.

Section 3 outlines a partially penalized estimation procedure and investigates the theo-

retical properties of our proposed estimator. We present extensive numerical studies in

Section 4, followed by an analysis of the mouse obesity data using our approach in Sec-

tion 5. We conclude with a discussion in Section 6. Proofs of theorems and corollaries are

provided in the supplementary material.

2 Notation, Assumptions and Identification

Suppose we have n independent and identically distributed observations from a population

of interest. For each observation i, let Zi denote a treatment variable, Yi a continuous out-
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come of interest, andMi· = (Mi1, . . . ,Mip)
T a vector of continuous mediator variables lying

in the causal pathways between the treatment and the outcome. Moreover, let Xi ∈ Rq de-

note a vector of pre-treatment covariates, and Ui ∈ Rt a vector of unmeasured confounders.

We make the stable unit treatment value assumption (Rubin, 1980) and adopt the po-

tential outcomes framework to formalize causal problems. Throughout the following, the

subscript i will be omitted unless needed to avoid ambiguity. Let Mj(z) and Y (z) denote

the potential values that the jth mediator Mj and the outcome Y would achieve if the

treatment Z were set to level z. Similarly, let Y (z,mj) denote the potential outcome by

simultaneously setting Z to level z and Mj to mj. In contrast, the notation Y {z,Mj(z
′)}

characterizes the potential outcome where the level of mediator Mj is not specified, but in-

stead fixed at the level potentially achieved under the treatment assignment z′. Analogous

definitions apply to the potential values M(z), Y (z,m), and Y {z,M(z′)}. The average

total causal effect of Z on Y is defined as TE = E{Y (z) − Y (z′)}. The average natural

direct effect (NDE) captures the effect achieved under two distinct treatment levels z and

z′, while maintaining the mediator at the value attained under a fixed treatment level z′,

i.e., NDE = E[Y {z,M(z′)} − Y {z′,M(z′)}]. Similarly, the average natural indirect effect

(NIE) quantifies the average change in the outcome when mediator M is set to the values

attained under different treatment levels z and z′, while fixing treatment Z at level z, i.e.,

NIE = E[Y {z,M(z)} − Y {z,M(z′)}].

Since the treatment Z can be randomized, it is plausible to assume that there are no un-

measured variables confounding the treatment-mediator or treatment-outcome relationship;

that is, (i) M(z) ⊥⊥ Z | X; (ii) Y (z,m) ⊥⊥ Z | X. However, there may often exist unmea-

sured confounders between the mediator and the outcome because the mediator cannot be

randomized in general. Thus, we assume U has captured all unmeasured mediator-outcome
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confounding; that is, (iii) Y (z,m) ⊥⊥ M | (Z,X,U); (iv) Y (z,m) ⊥⊥ M(z′) | (X,U). As-

sumptions (iii) and (iv) relax the commonly-used sequential ignorability assumption by

allowing U to affect M and Y (Imai et al., 2010; VanderWeele and Vansteelandt, 2014).

Besides these assumptions, assessing natural effects with multiple mediators also requires

that the mediators are causally ordered so that certain path-specific effects can be iden-

tified (Daniel et al., 2015). However, knowing the causal order among mediators may be

unrealistic in practice. Many studies have focused on the case where the mediators do not

causally affect each other (Lange et al., 2014; Zhang et al., 2016; Taguri et al., 2018; Jérolon

et al., 2020). For example, Zhang et al. (2016) analyzed an epigenome-wide DNA methy-

lation study with cytosine-phosphate-guanine as causally independent mediators. Huang

and Pan (2016) used gene expressions as mediators, which are measured simultaneously as

a snapshot, rather than in a sequential cascade, and they argued that undirected correla-

tions among expression values rather than a directed causal structure is more plausible.

Similar examples are considered in studies with multiple treatments (Miao et al., 2023;

Tang et al., 2023), which are common in many contemporary applications such as genetics,

recommendation systems and neuroimaging studies. To simplify the analysis, we thus focus

on the setting with causally independent mediators confounded by unmeasured variables,

as shown in Figure 1. This is also referred to as the parallel-mediator structure in Yuan

and Qu (2023). More examples and extensive discussions about this structure can be found

in Yuan and Qu (2023) and references therein.

Let g(Z,X) = E(M | Z,X) ∈ Rp and M̌ =M−g(Z,X), which represent the regression

mean and residual of the mediator on treatment and observed covariates, respectively. We
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Figure 1: A causal graph with multiple causally independent mediatorsM = (M1, . . . ,Mp)
and unmeasured confounders U .

propose the following structural equation models involving unmeasured variables U :

Y = β0 + β1Z + βT

2M + βT

3X + φTU + η, (1)

M̌ = ΓU + ε. (2)

Here, β2 ∈ Rp, β3 ∈ Rq, φ ∈ Rt, Γ ∈ Rp×t, E(η | Z,X) = E(ε | Z,X) = 0, and U , ε, and η

are mutually uncorrelated. Although the treatment Z is assumed to be of one-dimension

here, it is also allowed to be multi-dimensional in the models. As will be shown in the

supplement, the proposed approach can be extended to include additional nonlinear or

interaction terms in the outcome model. However, for the sake of clarity, we focus on the

simple yet commonly-used linear model throughout the paper. Let β = (β0, β1, β
T
2 , β

T
3 )

T and

ξ = (βT, φT)T. Model (2) implicitly assumes E(U | Z,X) = 0, which can be further relaxed

by allowing X to influence U . Specifically, if U = ΨX + Ũ and E(Ũ | Z,X) = 0, then Ũ

can replace U in models (1) and (2). Without loss of generality, we assume E(U) = 0t,

cov(U) = It. As previously assumed, the mediators do not affect each other, and hence

Σε = cov(ε) in (2) is diagonal. This essentially implies a latent factor model in (2). Then

the parameter Σε can be identifiable and the factor loading matrix Γ is identifiable up to

some rotation under certain conditions (Anderson et al., 1956). Under (1) and (2), we have:
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NDE = β1(z − z′), and NIE = βT
2 E{g(z,X) − g(z′, X)}. Similarly, the natural indirect

effect throughMj is: NIEj = E[Y {z,Mj(z)}−Y {z,Mj(z
′)}] = β2jE{gj(z,X)−gj(z′, X)},

where gj(z,X) represents the jth component of g(z,X). From these equations, we conclude

that estimating the direct and indirect effects hinges on estimating β1 and β2 in model (1).

The outcome model involves the unmeasured confounding U , which poses challenges in

identifying and estimating model parameters. Directly applying ordinary least squares to

regress Y on Z,M,X will yield biased estimates due to the correlation between U and M .

To address this issue, we employ projection techniques to extract the correlated component

from U , ensuring that the projection residual andM are uncorrelated. Specifically, through

L2 projection, we can select ∆ ∈ Rp×t such that cov(U −∆TM̌, M̌) = 0, and by model (2),

we find ∆ = (ΓΓT + Σε)
−1Γ ∈ Rp×t. Defining L = ∆TM̌ ∈ Rt and ψ = φT(U − L) + η, we

can reformulate model (1) as:

Y = β0 + β1Z + βT

2M + βT

3X + φTL+ ψ, (3)

where the new error term ψ is uncorrelated with Z,M,X,L. It is important to note that

the term φTU in model (1) has been replaced by φTL in model (3), and hence L can be seen

as a proxy for the unmeasured confounder U . However, while the sequential ignorability

assumption holds for the true unmeasured confounder U , the same assumption generally

does not hold for L, differing from the identification strategy proposed by Yuan and Qu

(2023). Based on (3), we next discuss the identification of model parameters.

Theorem 1. The vector of parameters β is identifiable, and φ is identifiable up to some

rotation if the following conditions hold:

(i) after deleting any row of Γ, there remain two disjoint sub-matrices of full column
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rank;

(ii) the matrix H = E{(1, Z,MT, XT, LT)T(1, Z,MT, XT, LT)} is of full rank.

Condition (i) in Theorem 1 is a standard requirement for identification in factor anal-

ysis. This condition ensures Γ to be identifiable up to some rotation. When U ∈ R1, this

condition requires Γ to be a vector containing at least three non-zero components, implying

that U must confound at least three different mediators. If U ∈ Rt, the factor loading ma-

trix Γ must contain at least 2t+1 rows, which implies that there are at least 2t+1 different

mediators, and condition (i) further requires that each variable in U should confound at

least three different mediators. Condition (ii) involves the constructed predictor L = ∆TM̌ ,

which, given a fixed value of M̌ , is identifiable up to a rotation. Although L is not com-

pletely identifiable, condition (ii) can be tested for any chosen rotation. The proof in the

supplement demonstrates that if condition (ii) holds for a specific rotation of L, it will also

hold for any other rotation. Thus, without loss of generality, we can fix the rotation for ease

of exposition. By the definition of L, it is clear that condition (ii) essentially requires the

vector-valued function g(Z,X) to contain some nonlinear terms of treatment and baseline

covariates. Below we provide an example to illustrate our identification conditions.

Example 1. Suppose X,U ∈ R1,M = (M1,M2,M3)
T. We consider the following models:

Y = Z +M1 +M2 +M3 +X + U + η,

M1 = Z +X + ZX + U + ε1,

M2 = Z +X + U + ε2,

M3 = Z +X + U + ε3,

where each predictor and residual are of zero mean and unit variance, and the residuals
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are mutually independent. In this context, Γ = (1, 1, 1)T, thus fulfilling condition (i).

Furthermore, we have

∆ = (Σε + ΓΓT)−1Γ =
Σ−1

ε Γ

1 + ΓTΣ−1
ε Γ

=
Γ

4
.

Consequently, we obtain L = ∆TM̌ = (M1 +M2 +M3 − 3Z − 3X −ZX)/4. Condition (ii)

is also met due to the inclusion of the interaction term between Z and X within L.

Example 1 illustrates that our approach only requires M1 to include the interaction

term ZX for identification. In contrast, the key assumption for identification in Zheng

and Zhou (2015) requires the vector {Z − E(Z | X), E(M | Z,X) − E(M | X)} to be

non-degenerate under our model setting. A vector of random variables (V1, · · · , Vk) is

considered to be non-degenerate if, for all λ1, · · · , λk ∈ R1, the condition E(
∑k

i=1 λiVi)
2 =

0 ⇔ λ1 = · · · = λk = 0 holds. In Example 1, {Z −E(Z | X), E(M | Z,X)−E(M | X)} =

{Z−E(Z | X)}(1, 1+X, 1, 1) is degenerate and the identification assumption by Zheng and

Zhou (2015) fails. Their assumption can be satisfied if all three mediators include distinct

interaction terms between treatment and baseline covariates. Meanwhile, the heterogeneity

condition of Wickramarachchi et al. (2023) requires var(M | Z = z,X = x) to vary with

z. However, in this example, the conditional variance is a constant vector. When each

Mj incorporates a heterogeneous residual term εjZ within the corresponding model, the

conditional variance will vary with respect to z.

Our identification conditions employ interaction or nonlinear terms in certain mediator

models as instruments rather than auxiliary variables. This approach aligns with com-

mon practices within the mediation analysis literature (Ten Have et al., 2007; Small, 2012;

Zheng and Zhou, 2015). Example 1 shows potentials of multiple mediators for identification

due to their shared-confounding structure. We further illustrate our identification strategy
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through the following example and highlight its difference from the null-treatment or spar-

sity assumptions in two related papers by Miao et al. (2023) and Tang et al. (2023) that

focus on multi-treatment problems, which also exploit the shared confounding structure.

Example 2. Consider the model presented in (1)-(2), where M ∈ Rp, and all other vari-

ables Z,X,U, η, εj are of one-dimension, zero mean and unit variance for j = 1, . . . , p.

Let

β2 = (1, 1, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
p−5

)T, Γ = (1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
p−10

)T.

The null treatment strategy outlined in Miao et al. (2023) assumes that the cardinality

of E ∩ F should not exceed (|E| − t)/2, where E and F represent index sets of confounded

treatments and active treatments that have non-zero effects on the outcome respectively in a

multi-treatment scenario. Here, t is the dimension of unmeasured confounding. By adapting

this strategy to the context of the current mediation analysis, we find that |E ∩ F| = 5,

which is greater than (|E| − t)/2 = (10− 1)/2 = 4.5. This fails to meet the null treatment

assumption. Since t = 1, we deduce from Example 1 that ∆ = (1 + ΓTΣ−1
ε Γ)−1Σ−1

ε Γ.

The identification assumption of the synthetic instrument approach by Tang et al. (2023)

necessitates the invertibility of any t× t submatrix of ∆. Here the invertibility of ∆ requires

that all components in Γ are nonzero, which does not hold true in our context. In contrast,

our identification assumption can be satisfied when gj(Z,X) is a nonlinear function of Z

and X for some j = 1, · · · , 10, as shown in the simulation studies.

3 Estimation and Inference

In this section, we present a partially penalized procedure for estimating outcome model

parameters when β2 is assumed to be sparse. Due to the curse of dimensionality, conducting
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nonparametric estimation of g(Z,X) often becomes impractical, especially when dealing

with a large number of covariates. We thus propose a semiparametric model g(Z,X; γ)

parameterized by a finite-dimensional vector γ ∈ Rk. Let the operator Ê[·] denote the

sample averaging operation. For a matrix V , let vec(V ) denote the vectorization of V and

diag(V ) the vector consisting of the diagonal elements of V .

Denote M̌(γ) = M − g(Z,X; γ) and ν = vec[{γ,Γ, diag(Σε)}]. Let γ̂, Γ̂, Σ̂ε, ν̂ be the

estimates of γ,Γ,Σε, ν, respectively. The estimation procedure is summarized as follows:

(1) Solve the minimization problem minγ Ê∥M̌(γ)∥22 to obtain γ̂ and denote M̌(γ̂) =

M − g(Z,X; γ̂), where ∥·∥2 represents the ℓ2 norm;

(2) Implement factor analysis on M̌(γ̂) to obtain Γ̂ and Σ̂ε, then obtain ∆̂ = (Γ̂Γ̂T +

Σ̂ε)
−1Γ̂ and an estimate L̂ = ∆̂TM̌(γ̂) of the proxy variable L;

(3) Solve the following adaptive lasso problem to obtain β̂ad:

β̂ad = argmin
β,φ

Ê
(
Y − β0 − β1Z − βT

2M − βT

3X − φTL̂
)2

+
λn
n

p∑
r=1

ŵr|β2,r|, (4)

where ŵ = |β̂in,2|−δ using an initial
√
n-consistent estimator β̂in,2 of β2, and δ, λn > 0

are tuning parameters.

Step (1) corresponds to solving k estimating equations to obtain γ̂. Since E{M̌(γ) |

Z,X} = 0, it follows that E{M̌(γ)G(Z,X)} = 0 for any function G(·). Particularly,

the minimization problem minγ Ê∥M̌(γ)∥22 in step (1) corresponds to solving the following

estimating equations:

Ê

{
M̌(γ)T

∂g(Z,X; γ)

∂γT

}
= 0. (5)
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The estimation procedure for Γ and Σε in step (2) is performed by maximizing the

following normal likelihood function, assuming U ∼ N(0, It) and ε ∼ N(0,Σε) (Anderson

et al., 1956): l(Γ,Σε) = − log|Σ| − tr(TnΣ
−1), where Tn = Ê{M̌(γ)M̌(γ)T},Σ = ΓΓT + Σε

and tr(·) represents the trace operator. It is worth noting that the normal assumption is

not essential in factor analysis because we can treat the likelihood as a quasi-likelihood.

Maximizing the above likelihood function in step (2) is equivalent to solving (5) and the

following estimating equations:

Ê

[
∂

∂α

{
log|Σ|+ M̌(γ)TΣ−1M̌(γ)

}]
= 0, (6)

where α = vec[{Γ, diag(Σε)}]. Different from the classical adaptive lasso problem (Zou,

2006), the minimization problem in (4) involves an estimated variable L̂ for L and par-

tially penalizes β2 rather than the entire parameter vector. This introduces complexity in

the theoretical analysis, because it requires consideration of additional uncertainty when

deriving the asymptotic results of the proposed estimator.

Theorem 1 shows that β is identifiable, although the factor loading Γ is identifiable only

up to a rotation matrix. To ensure identifiability of Γ, a second condition is commonly

imposed (Anderson et al., 1956; Bai and Li, 2012); that is, ΓTΣ−1
ε Γ is assumed to be

diagonal, with distinct positive elements arranged in decreasing order. For the convenience

of theoretical analysis, we retain this second condition to fix the rotation matrix of Γ. The

asymptotic distribution of the estimator of β2 remains unaffected by the rotation matrix.

In other words, we can replace Γ with ΓA for any orthogonal matrix A, and the conclusions

presented in this section will remain valid. We define

Q(S; ν) =

[
M̌(γ)T

∂g(Z,X; γ)

∂γT
,
∂

∂αT

{
M̌(γ)TΣ−1M̌(γ) + log|Σ|

}]T

,
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where S = (Z,MT, XT)T. Then we can summarize the estimating equations in (5) and (6)

as follows: Ê{Q(S; ν)} = 0. The estimator ν̂ is derived by solving these equations. Under

certain regularity conditions, ν̂ is
√
n-consistent for ν0 and asymptotically normal, where

ν0 denotes the true value of ν.

The initial
√
n-consistent estimator β̂in,2 in step (3) can be computed using various

methods, such as ordinary least squares or the lasso procedure. However, when dealing

with potentially many predictors, the lasso-type estimator is often preferred, especially

when the true parameter is assumed to have a sparse structure. In this context, we present

an initial lasso estimator, denoted as ξ̂la, for ξ. This estimator is derived by partially

penalizing β2 in the following problem:

ξ̂la = (β̂T

la, φ̂
T

la)
T = argmin

β,φ
Ê
(
Y − β0 − β1Z − βT

2M − βT

3X − φTL̂
)2

+
λn
n

p∑
r=1

|β2,r|.

Let R = (1, Z,MT, XT, LT)T, and Ri represents the ith realization of R. We summarize

the
√
n-consistency of ξ̂la in the following theorem.

Theorem 2. Suppose that λn = op(
√
n) and the following conditions are satisfied:

(i) n−1max1≤i≤nRiR
T
i → 0, and Cn = n−1

∑n
i=1RiR

T
i → C for a positive definite matrix

C;

(ii) For 1 ≤ i, j ≤ t, the following expectations exist:

E

{
R
∂Lj(ν0)

∂νT

}
, and E

{
∂Li(ν0)

∂ν

∂Lj(ν0)

∂νT

}
;
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(iii) E(KKT) exists, where

K = E

[
R
∂{φTL(ν0)}

∂νT

][
∂E{Q(S; ν0)}

∂ν

]−1

Q(S; ν0) +Rψ.

Then under additional regularity conditions provided in the supplement, we have:

√
n
(
ξ̂la − ξ

) d−→ N(0,Σla),

where Σla = C−1E
(
KKT

)
C−1.

The uncertainty associated with ξ̂la in Theorem 2 stems from two distinct sources.

Firstly, it comes from the procedure employed to estimate the parameters of ν0, and sec-

ondly, it arises from the process of estimating β through the partially penalized least squares

method. If the true value ν0 or L were known, the optimization problem would become

a standard lasso problem with a partial penalization term. Consequently, the covariance

matrix Σla would be simplified to C−1E
(
Rψ2RT

)
C−1. This demonstrates that the first

term within K accounts for the uncertainty in estimation of the constructed proxy variable

L, which is also the impact of unmeasured confounding U on the estimation of β.

As shown in Theorem 1, β is identifiable while φ is only identifiable up to some rota-

tion, which implies that the constructed predictor L, and therefore R, are not completely

identifiable. This raises an important question of whether the asymptotic normality of β̂la

in Theorem 2 depends on the rotation of R. In particular, suppose that R is replaced by

PR with P defined as follows:

P =

Ip+q+2 0

0 A

 ,

and A denotes a rotation matrix that satisfies AAT = ATA = It. In this situation, because

16



φTL is identifiable, the variable K in condition (iii) of Theorem 2 will similarly be replaced

by PK, leading to an asymptotic variance of
√
n
(
ξ̂la − ξ

)
represented by:

(
PCP T

)−1{
PE(KKT)P T

}(
PCP T

)−1
= PΣlaP

T =

 Σ11 Σ12A
T

AΣT
12 AΣ22A

T

 ,

where Σij’s (i, j = 1, 2) are block matrices of Σla. It is thus evident that the asymptotic

variance of φ̂la and its asymptotic covariance with estimators of β may be influenced by the

rotation of R. However, the asymptotic variance of β̂la remains unaffected by any rotation

of R.

Building upon the
√
n-consistent lasso estimator, we proceed to construct an initial

estimator with all non-zero elements for β2, given by β̂in,2 = β̂la,2 + n−1, and introduce the

adaptive weight ŵ = |β̂in,2|−δ for some δ > 0. Let A be the set of indices corresponding to

the non-zero elements of β2, and Ân represent the set of indices for non-zero elements of

β̂ad,2; that is, A = {j : β2j ̸= 0} and Ân = {j : β̂ad,2j ̸= 0}. We then define Ã as the union

of index sets of β0, β1, β2,A, β3, and φ.

Theorem 3. Suppose conditions in Theorem 2 hold and λnn
(δ−1)/2 → ∞. Then we have

(i) consistency in variable selection: limn→∞ P (Ân = A) = 1,

(ii) asymptotic normality:
√
n(ξ̂ad,Ã − ξÃ)

d−→ N(0,Σad),

where ξ̂ad = (β̂T
ad, φ̂

T
ad)

T,Σad = C̃−1E(KÃK
T

Ã)C̃
−1, and C̃ = CÃ,Ã.

Theorem 3 shows that the adaptive lasso estimator β̂ad enjoys the oracle property.

Specifically, the estimator β̂ad successfully identifies the true nonzero elements of β2 with

probability asymptotically approaching 1, and the joint asymptotic distribution of the

estimator β̂ad and φ̂ad is the same as if the true underlying subset model were given in
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advance. The optimal values of the tuning parameters are chosen through cross-validation

procedures. We have previously demonstrated that the asymptotic variance of β̂la remains

unaffected by the rotation of R. The same holds true for the adaptive lasso estimator β̂ad,

with C and K replaced by C̃ and KÃ in its asymptotic variance. The asymptotic variance

Σad can be estimated using the observed data. Specifically, we can directly estimate C by

employing the sample mean Cn = Ê(RRT). Likewise, E(KKT) can also be estimated using

the sample mean, incorporating estimators of all relevant parameters. By incorporating

these estimators along with the estimated index set Ân, we can construct a consistent

estimate of the asymptotic variance for the adaptive lasso estimator.

Because NDE = β1(z−z′), the asymptotic normality of the estimator β̂ad,1 in Theorem 3

allows us to evaluate the significance of the natural direct effect. The indirect effect through

the jth mediator, denoted as NIEj, is equal to β2jλj, with λj = E{gj(z,X; γ)−gj(z′, X; γ)}.

Traditional approaches for selecting active mediation pathways often involve performing

the composite null hypothesis for each mediator: β2jλj = 0, which is complicated in prac-

tice (Huang, 2019; Liu et al., 2022). Leveraging the selection consistency of the adaptive

lasso estimator β̂ad,2, we can simplify the process of identifying active mediation path-

ways. Specifically, Theorem 3 implies that, the mediators truly affecting the outcome can

be asymptotically selected due to the oracle property of β̂ad,2. To determine the active

mediation pathways, one can subsequently test whether λj = 0 among the selected me-

diators to identify those also influenced by the treatment variable. For example, when

g(Z,X) = γ1Z + γ2X + γ3X
2, the term λj = γ1j(z − z′), and it suffices to test whether

γ1j = 0 for j ∈ Ân using the standard t-test method. More generally, one can construct an

estimator λ̂j = Ê{gj(z,X; γ̂) − gj(z
′, X; γ̂)} for λj, and subsequently calculate the corre-

sponding z-score to test whether λj = 0 for j ∈ Ân. We summarize the two-step procedure
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for selecting active causal mediation pathways as follows: (1) obtain the index set Ân from

the nonzero elements of β̂ad,2; (2) for each j ∈ Ân, perform a hypothesis test Hj : λj = 0.

Define the index subset Âact,n as the union of indices j ∈ Ân for which Hj is rejected at

the significance level αj. The set Âact,n represents the estimated active mediator set.

As shown above, the proposed two-step procedure for selecting active mediation path-

ways involves performing simple hypothesis tests Hj for j ∈ Ân, without the necessity

of conducting a composite null hypothesis test for all mediators. We present the follow-

ing corollary to highlight that the proposed procedure can consistently select the active

mediation pathways with a large probability.

Corollary 1. Denote Aact ⊆ A as the true active mediator set, then under certain regu-

larity conditions in the supplement, we have

lim
n→∞

P (Âact,n = Aact) ≥ 1−
∑

j∈A\Aact

αj.

In Corollary 1, the consistency of selecting active mediation pathways hinges on con-

trolling the probability of rejecting at least one true Hj, also known as the family-wise

error rate. This error rate should not exceed the aggregate significance levels, denoted

by
∑

j∈A\Aact
αj. The classical Bonferroni correction method achieves error control at a

predetermined significance level α by setting αj = α/h for each individual test Hj, where

h = |Ân| denotes the number of selected mediators in the first step. However, given the

potential conservatism of the Bonferroni correction when h is large, one can also adopt

more powerful multiple testing techniques, such as Holm’s method, Hochberg’s method or

the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995), as implemented in

our application section.
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Table 1: Simulation results of the mean squared error (MSE), the number of true positives
(TP) and the number of false negatives (FP) for estimating β2 by the proposed approach,
naive lasso and naive adaptive lasso in scenario 1.

Proposed approach Naive lasso Naive adaptive lasso

p 100 200 300 100 200 300 100 200 300

MSE 0.06 0.03 0.03 0.12 0.12 0.11 0.15 0.15 0.15
n = 300, φ = 1 TP 5 5 5 5 5 5 5 5 5

FP 0.07 0 0 11.79 14.14 15.43 0.01 0 0

MSE 0.23 0.22 0.08 1.40 1.39 1.37 1.48 1.51 2.03
n = 300, φ = 4 TP 4.99 5 5 5 5 5 5 5 5

FP 3.27 4.60 0.27 11.29 13.86 13.69 5.37 5.58 1.42

MSE 0.02 0.02 0.02 0.10 0.10 0.10 0.14 0.14 0.14
n = 600, φ = 1 TP 5 5 5 5 5 5 5 5 5

FP 0 0 0 12.54 12.75 14.72 0 0 0

MSE 0.05 0.04 0.04 1.38 1.36 1.36 1.41 1.42 1.42
n = 600, φ = 4 TP 5 5 5 5 5 5 5 5 5

FP 0.18 0.01 0 12.13 12.59 14.33 5 4.99 5

MSE 0.01 0.01 0.01 0.09 0.09 0.09 0.13 0.13 0.13
n = 1000, φ = 1 TP 5 5 5 5 5 5 5 5 5

FP 0 0 0 12.18 13.86 15.26 0 0 0

MSE 0.04 0.03 0.03 1.37 1.37 1.35 1.39 1.39 1.39
n = 1000, φ = 4 TP 5 5 5 5 5 5 5 5 5

FP 0.01 0.01 0 11.74 12.65 14.51 5 5 5

4 Simulation

In this section, we conduct simulation studies to assess the finite-sample performance of

the proposed estimator. We compare our approach with two naive penalized regression

methods, the naive lasso and naive adaptive lasso, which do not account for unmeasured

mediator-outcome confounding. We generate the outcome Y and mediators M ∈ Rp based

on the following models:

Y = β1Z + βT

2M + β3X + φU + η,

M = γ1Z + γ2X + γ3 exp(X) + ΓU + ε.

Here, (Z,X,U, ε, η) are drawn from a multivariate normal distribution with zero mean
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and identity covariance matrix. We set β1 = β3 = 1, γ1 = γ2 = (1, 1, 1, 1, . . . , 1)T and let

γ3 = (0.5, 0.5, 0.5, 0, . . . , 0︸ ︷︷ ︸
p−3

)T, Γ = (1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
p−10

)T,

where the first three elements of γ3 is non-zero, meaning that the first three mediators

contain the nonlinear term exp(X), and the first ten elements of Γ is non-zero, meaning that

the unmeasured variable U confounds the first ten mediators. We consider two scenarios

for β2:

Scenario 1: β2 = (1, 1, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
p−5

)T; Scenario 2: β2 = (1, 1, 1, 1, 1, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
15

)T.

Scenario 1 is constructed to include five mediators that are both active and confounded,

while scenario 2 incorporates additional 15 active but unconfounded mediators. We vary

the sample size n across {300, 600, 1000} and the dimension p across {100, 200, 300}.

Given that the effect of Z on each Mj has been fixed at 1, an individual mediation

pathway is active whenever the effect of Mj on Y is non-zero. Thus, our focus lies in

assessing precision of estimating β2 and the selection consistency. We compute the mean

squared error (MSE) of each estimator, which is the sum of mean squared errors across the

coordinates of the estimator: MSE =
∑p

j=1(β̂2j − β2j)
2, where β̂2j denotes an estimator of

β2j for j = 1, . . . , p. We also calculate the number of true positives (TP) and false positives

(FP) in estimating β2. The results of MSE, TP, and FP for all methods, averaged over 200

experiments, are presented in Tables 1 and 2 for scenarios 1 and 2, respectively.

The results in Table 1 indicate a significantly smaller MSE for our approach compared to

the naive lasso and naive adaptive lasso methods. Notably, as the unmeasured confounding

strength φ increases from 1 to 4, the advantage of our approach becomes more apparent
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Table 2: Simulation results for scenario 2. The caption details remain the same as those in
Table 1.

Proposed approach Naive lasso Naive adaptive lasso

p 100 200 300 100 200 300 100 200 300

MSE 0.38 0.18 0.26 0.36 0.46 0.52 0.30 0.31 0.52
n = 300, φ = 1 TP 19.93 20 20 20 20 20 20 20 20

FP 0.29 0.05 0.04 33.12 49.34 54.21 0.01 0 0

MSE 0.63 0.41 0.45 1.99 2.18 2.30 1.68 1.73 4.49
n = 300, φ = 4 TP 19.93 19.99 19.99 20 20 20 20 20 19.81

FP 1.89 2.72 0.15 31.48 46.65 55.24 5.27 6.66 1.52

MSE 0.12 0.11 0.11 0.24 0.25 0.28 0.24 0.25 0.24
n = 600, φ = 1 TP 20 20 20 20 20 20 20 20 20

FP 0.01 0.01 0 22.35 44.81 57.34 0 0 0

MSE 0.24 0.21 0.19 1.67 1.74 1.80 1.49 1.51 1.51
n = 600, φ = 4 TP 20 20 20 20 20 20 20 20 20

FP 0.17 0.30 0 32.69 44.95 53.46 5.00 4.94 4.98

MSE 0.09 0.09 0.09 0.21 0.21 0.21 0.22 0.22 0.22
n = 1000, φ = 1 TP 20 20 20 20 20 20 20 20 20

FP 0 0 0 10.31 23.88 44.38 0 0 0

MSE 0.16 0.13 0.14 1.55 1.59 1.61 1.44 1.44 1.44
n = 1000, φ = 4 TP 20 20 20 20 20 20 20 20 20

FP 0.10 0.02 0 32.69 45.68 53.96 5 5 5

in terms of MSE, particularly evident in larger sample sizes. From the TP results, we

find that all methods appear to correctly identify the mediators that genuinely affect the

outcome across various scenarios. However, concerning FP, our approach exhibits superior

performance compared to the other two. The naive lasso exhibits the highest FP among

the three methods. For cases with weaker unmeasured confounding strength (i.e., φ = 1),

the naive adaptive lasso demonstrates similar performance to our approach, both yielding

nearly zero FP. However, as φ increases, the FP of our approach remains consistently lower

than that of the naive adaptive lasso in all scenarios. Moreover, with larger sample sizes,

the FP of our approach converges to approximately zero, whereas the naive adaptive lasso

maintains an FP of around 5. This value aligns with the number of mediators confounded

by U yet not affecting the outcome. This distinction highlights that our approach can

effectively filter out false signals arising from unmeasured confounding, while the other two
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Table 3: Simulation results for scenario 1 under model (8). The parameter φ1 indicates
the extent of model misspecification, and the rest of the caption details remain the same
as those in Table 1.

Proposed approach Naive lasso Naive adaptive lasso

p 100 200 300 100 200 300 100 200 300

MSE 0.03 0.03 0.03 1.37 1.36 1.37 1.40 1.39 1.39
φ1 = 0.5 TP 5 5 5 5 5 5 5 5 5

FP 0 0.01 0 11.54 13.84 14.95 5 5 5

MSE 0.04 0.04 0.04 1.38 1.37 1.37 1.40 1.39 1.39
φ1 = 1 TP 5 5 5 5 5 5 5 5 5

FP 0 0.02 0 11.35 14.79 14.58 5 5 5

MSE 0.06 0.07 0.07 1.39 1.39 1.38 1.40 1.39 1.39
φ1 = 1.5 TP 5 5 5 5 5 5 5 5 5

FP 0.02 0.41 0.69 11.39 14.85 14.35 5 5 5

MSE 0.12 0.27 0.25 1.41 1.41 1.39 1.40 1.39 1.39
φ1 = 2 TP 5 5 5 5 5 5 5 5 5

FP 1.32 5.50 4.49 11.06 14.40 14.27 5 5 5

methods might incorrectly identify them as genuine signals. Similar simulation results are

displayed in Table 2.

These simulation results demonstrate that our approach can successfully identify the

mediators with significant effects on the outcome. It can also eliminate nearly all false

signals when unmeasured mediator-outcome confounding is present. In contrast, the two

naive methods often misinterpret mediators confounded by U as valid signals. Specifically,

for the more competitive naive adaptive lasso method in scenario 1, all the ten mediators

confounded by U are incorrectly identified as the true mediators, although half of them

do not affect the outcome. Our approach can accurately differentiate between genuine

signals and those that have spurious correlations with the outcome due to confounding

bias. Despite the strong performance of all methods in terms of TP in the current settings,

the presence of confounding bias may also lead the naive approachs to miss certain valid

signals, which will induce lower TP values in certain cases for the two naive approachs.

To assess the robustness of our proposed estimator against model misspecification, we
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Table 4: Simulation results for scenario 2 under model (8). The parameter φ1 indicates
the extent of model misspecification, and the rest of the caption details remain the same
as those in Table 1.

Proposed approach Naive lasso Naive adaptive lasso

p 100 200 300 100 200 300 100 200 300

MSE 0.15 0.19 0.15 1.58 1.62 1.66 1.44 1.44 1.44
φ1 = 0.5 TP 20 20 20 20 20 20 20 20 20

FP 0.01 0.03 0 31.90 46.08 55.38 5 5 5

MSE 0.19 0.22 0.18 1.65 1.73 1.77 1.44 1.44 1.44
φ1 = 1 TP 20 20 20 20 20 20 20 20 20

FP 0.02 0.03 0 31.37 45.43 54.07 5 5.00 5

MSE 0.24 0.28 0.25 1.78 1.90 1.96 1.44 1.44 1.44
φ1 = 1.5 TP 20 20 20 20 20 20 20 20 20

FP 0.06 0.06 0.23 30.64 44.37 53.01 5 5.00 5

MSE 0.33 0.41 0.42 1.96 2.13 2.23 1.44 1.44 1.44
φ1 = 2 TP 20 20 20 20 20 20 20 20 20

FP 0.21 1.88 2.74 30.29 44.02 53.09 5 5.00 5

extend the analysis to generate the outcome Y in the following new way:

Y = β1Z + βT

2M + β3X + φU + φ1U
2 + η. (8)

Here, β1, β2, and β3 take the same values as those specified in the correctly specified model

setting. We consider a relatively large sample size n = 1000 and relatively strong unmea-

sured confounding with φ = 4. The parameter φ1 varies across {0.5, 1, 1.5, 2}, and the

results are presented in Tables 3 and 4 for the two distinct scenarios of β2. Table 3 shows

that our approach consistently outperforms the two naive approachs in terms of MSE,

regardless of the specific value of φ1. When the outcome model exhibits mild misspecifi-

cation, with lower φ1 values indicating less deviation, our approach can precisely exclude

false signals and exhibit minimal false positives. However, in the presence of substantial

misspecification, characterized by φ1 = 2, all three methods are unable to completely avoid

inducing false signals. Similar results are presented in Table 4. Overall, these findings
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imply that our proposed estimator can still provide good performance when the outcome

model is moderately misspecified.

5 Data Analysis

In this section, we use the mouse obesity data described by Wang et al. (2006) to illustrate

the proposed approach. This study focuses on evaluating the effect of gene expressions

on the body weight of F2 mice. In this context, it is important to consider potential

unmeasured phenotypes that might confound the gene expressions and body weight. Lin

et al. (2015) employed single nucleotide polymorphisms (SNPs) as instrumental variables

and introduced a high-dimensional instrumental variable regression approach for analyzing

this mouse obesity dataset. However, the presence of potential pleiotropic effects poses a

challenge, because the SNPs might violate the exclusion restriction assumption fundamental

to instrumental variables. Among the pool of SNPs, a specific variable named rs4231406

was previously identified as a quantitative trait locus for atherosclerosis, with a significant

association with both body weight and adiposity (Wang et al., 2006). Here, our goal is

to investigate the direct effect of this SNP on body weight as well as its potential indirect

effect through gene expressions using mediation analysis. The dataset we use includes 287

mice and comprises two observed covariates: sex and SNP density. Our analysis further

incorporates the top 200 gene expressions that exhibit the strongest correlations with body

weight as candidate mediators.

We apply the proposed approach to analyze this data and employ the naive adaptive

lasso method for comparison. The results show that the proposed approach estimates the

natural direct effect to be 0.251, exhibiting a standard deviation of 0.443 and a correspond-

ing p-value of 0.572. This suggests that the SNP identified as rs4231406 does not appear to

25



Table 5: Estimate and standard deviation (SD) of natural indirect effects through selected
genes, and the corresponding p-value of testing each mediation pathway by the proposed
approach. The genes framed in red are found to be active by all multiple testing correction
procedures.

Gene Estimate SD p-value Gene Estimate SD p-value

Slc39a11 0.131 0.072 < 10−3 Vkorc1l1 -0.038 0.124 0.205

Ercc3 0.144 0.272 0.001 Lamc1 0.0144 0.041 0.252
Psmd12 0.124 0.118 0.003 Serpina12 -0.013 0.027 0.316
Zfp533 0.172 0.275 0.005 Tbx 22 0.006 0.118 0.357
Serpina6 -0.157 0.094 0.006 Cmas -0.019 0.129 0.522

RGD1563955 -0.139 0.121 0.012 Rn.20259 0.035 0.100 0.536
Nek2 -0.143 0.297 0.012 Psmd8 -0.026 0.140 0.550

Slc43a1 0.043 0.058 0.040 Igsf5 -0.019 0.105 0.680
Adamts8 0.010 0.083 0.047 Rn.8483 0.003 0.151 0.702

Pigr 0.073 0.015 0.049 F2r -0.009 0.057 0.812
S100a10 0.052 0.038 0.062 Tsc22d1 0.001 0.029 0.895
Trim13 0.074 0.141 0.125 Prdm1 -0.003 0.080 0.947
Agtr1a 0.034 0.072 0.169 Avpr1a -0.004 0.074 0.954

Table 6: Analysis results of the mouse obesity data by the naive adaptive lasso method.
The genes in bold show those that are selected only by this method, and the rest of the
caption details remain the same as those in Table 5.

Gene Estimate SD p-value Gene Estimate SD p-value

Hip2 0.076 0.405 < 10−4 Vkorc1l1 -0.048 0.107 0.205

Slc39a11 0.122 0.081 < 10−3 Dot1l -0.002 0.057 0.205

Ercc3 0.167 0.088 0.001 Lamc1 0.012 0.029 0.252
Psmd12 0.113 0.138 0.003 BC022687 < 10−4 0.029 0.267
Zfp533 0.169 0.133 0.005 Serpina12 -0.020 0.057 0.316
Serpina6 -0.154 0.066 0.006 Tbx 22 0.004 0.120 0.357

RGD1563955 -0.151 0.132 0.012 Cmas -0.023 0.118 0.522
Nek2 -0.152 0.082 0.012 Rn.20259 0.035 0.101 0.536

Slc43a1 0.037 0.033 0.040 Psmd8 -0.025 0.148 0.550
Adamts8 0.023 0.068 0.047 Igsf5 -0.018 0.137 0.680

Pigr 0.099 0.114 0.049 Rn.8483 0.004 0.127 0.702
Smad5 0.006 0.032 0.061 F2r -0.009 0.055 0.812
S100a10 0.061 0.047 0.062 Tsc22d1 0.002 0.043 0.895
Trim13 0.071 0.106 0.125 Prdm1 -0.003 0.083 0.947
Sh3yl1 0.005 0.038 0.158 Avpr1a -0.004 0.121 0.954
Agtr1a 0.029 0.038 0.169
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significantly influence the outcome directly. The results obtained from the naive adaptive

lasso method provide similar findings, with an estimated natural direct effect of 0.193, a

standard deviation of 0.366, and a p-value of 0.598. The process of selecting active media-

tion pathways through our proposed procedure involves two steps. The first step focuses on

identifying the mediators that affect the outcome. Subsequently, the second step employs

a simple hypothesis testing procedure to individually assess whether the SNP has an effect

on each of the selected mediators.

Tables 5 and 6 present the results of the proposed approach and the naive adaptive

lasso in selecting genes respectively, excluding 3 genes due to unavailable information from

the original dataset. Both methods identify 26 genes that affect the body weight, while

the naive method additionally includes 5 more genes, namely Hip2, Smad5, Sh3yl1, Dot1l,

and BC022687. These findings seem to align with the simulation results, which indicate

an increased number of false positives in the naive method. In Tables 5 and 6, we also

present the calculated p-values for testing mediation pathways via the selected gene ex-

pressions. Given the presence of multiple testing challenges, we apply various correction

methods—Bonferroni, Holm’s, Hochberg’s, and Hommel’s—to control the family-wise er-

ror rate. These corrections confirm that our proposed approach identifies active mediation

pathways through the genes Slc39a11 and Ercc3, while the naive adaptive lasso method

selects an additional pathway through Hip2. It is worth noting that previous research

by Liu et al. (2013) has demonstrated a strong correlation between Slc39a11 and obesity

in mice. However, the naive method’s selection of Hip2, associated with E2 ubiquitin-

conjugating enzyme and neurodegenerative diseases, might not significantly influence the

mice’s body weight. This could be attributed to Hip2’s primary connection to neurode-

generative rather than obesity-related processes (Su et al., 2018). Furthermore, employing
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the Benjamini-Hochberg procedure to control the false discovery rate reveals additional 5

significant mediation pathways via Psmd12, Zfp533, Serpina6, RGD1563955, and Nek2 for

both methods. With larger sample sizes, our approach should be more reliable when being

applied to select the active mediation pathways in the presence of unmeasured mediator-

outcome confounding.

6 Discussion

This paper presents an approach for selecting active mediation pathways in the presence

of unmeasured mediator-outcome confounding within a linear structural equation outcome

model. Given the shared confounding structure, we formulate a latent factor model for

multiple mediators and construct a pseudo proxy variable to account for unmeasured con-

founding. We introduce identification conditions and a partially penalized adaptive lasso

procedure for estimation. We show that the resulting estimates are consistent and the

estimates of nonzero parameters are asymptotically normal. Then we outline a two-step

procedure to select active causal mediation pathways, without the need to test composite

null hypotheses for each mediator, as required by traditional methods. We also demonstrate

that the procedure consistently selects active mediation pathways with high probability.

The proposed approach may be improved or extended in several directions. Firstly, we

can extend the identification results to handle more complex outcome models. For instance,

the identification techniques can accommodate scenarios involving first-order interactions

between the treatment, mediator, and observed covariates within the outcome model. More

generally, even if the outcome model involves other complex functions of the treatment

and covariates, we can still achieve identification results under additional conditions akin

to those outlined in Theorem 1(ii); see the supplement for more details. Secondly, our
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approach relies on the standard latent factor model, which allows for the unmeasured

confounding to affect all mediators while not permitting causal relations between them.

The identification results may be extended to handle causally ordered mediators using other

variants of latent factor models (Grzebyk et al., 2004). The assumption of a predetermined

dimension for unmeasured confounding is typically well-founded in latent factor analysis,

because the number of factors can be consistently estimated (Bai and Ng, 2002). Thirdly,

the identification and asymptotic results presented in our work are only applicable to a

fixed mediator dimension p. It is important to note that the unmeasured confounding U in

our work cannot be recovered or consistently estimated, even if its pseudo proxy variable

L were known. In cases where p grows with n, similar conclusions could potentially be

established based on high-dimensional factor models (Bai et al., 2016). For instance, in the

scenario involving a scalar unmeasured confounder U , it requires the number of confounded

variables to approach infinity, enabling the consistent estimation of U , which may be a

strong assumption. Therefore, exploring theoretical properties when p grows with n, while

keeping the number of confounded mediators finite, represents an intriguing topic.
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